Title of article :
The role of microstructure in nanocrystalline conformal Co0.9W0.02P0.08 diffusion barriers for copper metallization
Author/Authors :
Michael A. Kohn، نويسنده , , M. Eizenberg، نويسنده , , Y. Shacham-Diamand، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
6
From page :
367
To page :
372
Abstract :
Electroless deposition of diffusion barriers for Cu metallization is an attractive process as it is selective, deposits conformal films at a low temperature and enables seedless Cu deposition. We demonstrate electroless deposition of conformal, ultra-thin (∼10 nm thick) films of Co0.9W0.02P0.08. Electroless Co0.9W0.02P0.08 is an effective barrier against Cu diffusion up to 450 °C as opposed to physical vapor deposited (PVD) Co, which is a poor barrier. In this study, the role of microstructure in determining the barrier properties is discussed. The microstructure of the as-deposited layers consists of nanocrystallites of hexagonal close-packed (hcp) Co and an amorphous CoWP component. The amorphous component crystallizes at approximately 290 °C to hcp Co. The orthorhombic Co2P phase nucleates at 420 °C, while the majority phase remains hcp Co. Since we have found that up to 450 °C there is no phase formation between Cu and the Co0.9W0.02P0.08 film, we conclude that the mechanism of barrier failure is grain boundaries diffusion. The dependance of Cu grain boundary diffusivity on the microstructure is qualitatively demonstrated by comparing between electroless deposited Co0.9W0.02P0.08, Co0.9P0.1 and PVD cobalt. Secondary ion mass spectrometry depth profile measurements were performed on the films after subjecting them to anneals at 400 °C resulting in type-C Cu grain boundary diffusion. The Cu diffusivity in the Co0.9W0.02P0.08 film is lower than in Co0.9P0.1, and substantially lower than in PVD Co. The difference in Cu diffusivity is explained by varying degrees of grain boundaries’ passivation due to the P and W alloying elements enriching the grain boundaries. This passivation effect is more pronounced in the Co0.9W0.02P0.08 films.
Keywords :
Electroless deposition , Interconnects , Diffusion barrier
Journal title :
Applied Surface Science
Serial Year :
2003
Journal title :
Applied Surface Science
Record number :
1000045
Link To Document :
بازگشت