Title of article :
Defects in nanocrystalline Nb films: Effect
of sputtering temperature
Author/Authors :
J. C ? ?´z?ek، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Abstract :
Thin niobium (Nb) films (thickness 350–400 nm) were prepared on (1 0 0)Si substrate in a UHV chamber using the cathode
beam sputtering. The sputtering temperature Ts was varied from 40 up to 500 8C and the influence of the sputtering temperature
on the microstructure of thin Nb films was investigated. Defect studies of the thin Nb films sputtered at various temperatures
were performed by slow positron implantation spectroscopy (SPIS) with measurement of the Doppler broadening of the
annihilation line. SPIS was combined with transmission electron microscopy (TEM) and X-ray diffraction (XRD). We have
found that the films sputtered at Ts = 40 8C exhibit elongated, column-like nanocrystalline grains. No significant increase of
grain size with Ts (up to 500 8C) was observed by TEM. The thin Nb films sputtered at Ts = 40 8C contain a high density of
defects. It is demonstrated by shortened positron diffusion length and a high value of the S parameter for Nb layer compared to
the well-annealed (defect-free) bulk Nb reference sample. A drastic decrease of defect density was found in the films sputtered at
Ts 300 8C. It is reflected by a significant increase of the positron diffusion length and a decrease of the S parameter for the Nb
layer. The defect density in the Nb layer is, however, still substantially higher than in the well-annealed reference bulk Nb
sample. Moreover, there is a layer at the interface between the Nb film and the substrate with very high density of defects
comparable to that in the films sputtered at Ts < 300 8C. All the Nb films studied exhibit a strong (1 1 0) texture. The films
sputtered at Ts < 300 8C are characterized by a compressive macroscopic in-plane stress due to lattice mismatch between the
film and the substrate. Relaxation of the in-plane stress was observed in the films sputtered at Ts 300 8C. The width of the XRD
profiles of the films sputtered at Ts 300 8C is significantly smaller compared to the films sputtered at lower temperatures. This
is most probably due to a lower defect density which results in reduced microstrains in the films sputtered at higher temperatures.
Keywords :
Cathode beam sputtering , Niobium films , Slow positron implantation spectroscopy , X-ray diffraction
Journal title :
Applied Surface Science
Journal title :
Applied Surface Science