Title of article :
Buffer queries
Author/Authors :
E.P.F.، Chan, نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
-894
From page :
895
To page :
0
Abstract :
A class of commonly asked queries in a spatial database is known as buffer queries. An example of such a query is to "find house-power line pairs that are within 50 meters of each other." A buffer query involves two spatial data sets and a distance d. The answer to this query are pairs of objects, one from each input set, that are within distance d of each other. Given nonpoint spatial objects, evaluation of buffer queries could be a costly operation, even when the numbers of objects in the input data sets are relatively small. This paper addresses the problem of how to evaluate this class of queries efficiently. A fundamental problem with buffer query evaluation is to find an efficient algorithm for solving the minimum distance (miniDist) problem for lines and regions. An efficient minDist algorithm, which only requires a subsequence of segments from each object to be examined, is derived. Finding a fast minDist algorithm is the first step in evaluating a buffer query efficiently. It is observed that many, and sometimes even most, candidates can be proven in the answer without resorting to the relatively expensive minDist operation. A candidate is first evaluated with a least expensive technique-called O-object filtering. If it fails, a more costly operation, called 1-object filtering, is applied. Finally, if both filterings fail, the most expensive minDist algorithm is invoked. To show the effectiveness of the these techniques, they are incorporated into the well-known tree join algorithm and tested with real-life as well as artificial data sets. Extensive experiments show that the proposed algorithm outperforms existing techniques by a wide margin in both execution time as well as IO accesses. More importantly, the performance gain improves drastically with the increase of distance values.
Keywords :
Abdominal obesity , Food patterns , waist circumference , Prospective study
Journal title :
IEEE Transactions on Knowledge and Data Engineering
Serial Year :
2003
Journal title :
IEEE Transactions on Knowledge and Data Engineering
Record number :
100553
Link To Document :
بازگشت