Title of article :
First-principles based phenomenological study of Ni nanocubes: The effects of nanostructuring on carbon poisoning of Ni(0 0 1) nanofacets
Author/Authors :
Renbo Zhao، نويسنده , , Seung Jae Lee، نويسنده , , Sang-Hyuk Son، نويسنده , , Hyunjoo Lee، نويسنده , , Aloysius Soon، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
7
From page :
339
To page :
345
Abstract :
Ni-based catalysts are long known to be an efficient low-cost catalyst for the dry (or steam) reforming of methane. However, they are often plagued with the serious issue of carbon poisoning, eventually leading to the deactivation of Ni-based catalysts for this reaction. In order to provide an atomistic, electronic structure-based examination of Ni-based catalyst deactivation, we perform first-principles density-functional theory (DFT) calculations of chemisorbed carbon and other surface carbidic structures on Ni(0 0 1). This surface is the predominant surface of the nanocube catalysts engineered via shape-control synthesis for steam/dry reforming of methane. We calculate the chemical binding energy of carbon as a function of its surface coverage and we study the local chemical environment via its electronic structure to draw correlations between the thermodynamic (de)stability of these unwanted carbidic structures. In an attempt to mimic bond contraction at the surface of nanocatalysts, we report the influence of surface stress on our calculated values using a shape-dependent phenomenological bond contraction model.
Keywords :
Carbon coking , Density-functional theory , Nickel nanocubes
Journal title :
Applied Surface Science
Serial Year :
2013
Journal title :
Applied Surface Science
Record number :
1006371
Link To Document :
بازگشت