Title of article :
An adaptive spatial fuzzy clustering algorithm for 3-D MR image segmentation
Author/Authors :
Yan، Hong نويسنده , , A.W.C.، Liew, نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Abstract :
An adaptive spatial fuzzy c-means clustering algorithm is presented in this paper for the segmentation of three-dimensional (3-D) magnetic resonance (MR) images. The input images may be corrupted by noise and intensity nonuniformity (INU) artifact. The proposed algorithm takes into account the spatial continuity constraints by using a dissimilarity index that allows spatial interactions between image voxels. The local spatial continuity constraint reduces the noise effect and the classification ambiguity. The INU artifact is formulated as a multiplicative bias field affecting the true MR imaging signal. By modeling the log bias field as a stack of smoothing B-spline surfaces, with continuity enforced across slices, the computation of the 3-D bias field reduces to that of finding the B-spline coefficients, which can be obtained using a computationally efficient twostage algorithm. The efficacy of the proposed algorithm is demonstrated by extensive segmentation experiments using both simulated and real MR images and by comparison with other published algorithms.
Journal title :
IEEE Transactions on Medical Imaging
Journal title :
IEEE Transactions on Medical Imaging