Title of article :
An Integrated Approach to Uncover Drivers of Cancer
Author/Authors :
Uri David Akavia، نويسنده , , Oren Litvin، نويسنده , , Jessica Kim Quijano، نويسنده , , Felix Sanchez-Garcia، نويسنده , , Dylan Kotliar، نويسنده , , Helen C. Causton، نويسنده , , Panisa Pochanard، نويسنده , , Eyal Mozes، نويسنده , , Levi A. Garraway، نويسنده , , Dana Peʹer، نويسنده ,
Issue Information :
هفته نامه با شماره پیاپی سال 2010
Pages :
13
From page :
1005
To page :
1017
Abstract :
Systematic characterization of cancer genomes has revealed a staggering number of diverse aberrations that differ among individuals, such that the functional importance and physiological impact of most tumor genetic alterations remain poorly defined. We developed a computational framework that integrates chromosomal copy number and gene expression data for detecting aberrations that promote cancer progression. We demonstrate the utility of this framework using a melanoma data set. Our analysis correctly identified known drivers of melanoma and predicted multiple tumor dependencies. Two dependencies, TBC1D16 and RAB27A, confirmed empirically, suggest that abnormal regulation of protein trafficking contributes to proliferation in melanoma. Together, these results demonstrate the ability of integrative Bayesian approaches to identify candidate drivers with biological, and possibly therapeutic, importance in cancer.
Journal title :
CELL
Serial Year :
2010
Journal title :
CELL
Record number :
1020532
Link To Document :
بازگشت