Author/Authors :
Rebecca A. Green، نويسنده , , Huey-Ling Kao، نويسنده , , Anjon Audhya، نويسنده , , Swathi Arur، نويسنده , , Jonathan R. Mayers، نويسنده , , Heidi N. Fridolfsson، نويسنده , , Monty Schulman، نويسنده , , Siegfried Schloissnig، نويسنده , , Sherry Niessen، نويسنده , , Kimberley Laband، نويسنده , , Shaohe Wang، نويسنده , , Daniel A. Starr، نويسنده , , Anthony A. Hyman and Stephen C. Harrison، نويسنده , , Tim Schedl، نويسنده , , Arshad Desai، نويسنده , , Fabio Piano، نويسنده , , Kristin C. Gunsalus، نويسنده , , Karen Oegema، نويسنده ,
Abstract :
High-content screening for gene profiling has generally been limited to single cells. Here, we explore an alternative approach—profiling gene function by analyzing effects of gene knockdowns on the architecture of a complex tissue in a multicellular organism. We profile 554 essential C. elegans genes by imaging gonad architecture and scoring 94 phenotypic features. To generate a reference for evaluating methods for network construction, genes were manually partitioned into 102 phenotypic classes, predicting functions for uncharacterized genes across diverse cellular processes. Using this classification as a benchmark, we developed a robust computational method for constructing gene networks from high-content profiles based on a network context-dependent measure that ranks the significance of links between genes. Our analysis reveals that multi-parametric profiling in a complex tissue yields functional maps with a resolution similar to genetic interaction-based profiling in unicellular eukaryotes—pinpointing subunits of macromolecular complexes and components functioning in common cellular processes.