Title of article :
Review of robust multivariate statistical methods in high dimension
Author/Authors :
Peter Filzmoser، نويسنده , , Valentin Todorov، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
13
From page :
2
To page :
14
Abstract :
General ideas of robust statistics, and specifically robust statistical methods for calibration and dimension reduction are discussed. The emphasis is on analyzing high-dimensional data. The discussed methods are applied using the packages chemometrics and rrcov of the statistical software environment R. It is demonstrated how the functions can be applied to real high-dimensional data from chemometrics, and how the results can be interpreted.
Keywords :
robustness , partial least squares , Principal component analysis , Diagnostics , validation , Multivariate analysis
Journal title :
Analytica Chimica Acta
Serial Year :
2011
Journal title :
Analytica Chimica Acta
Record number :
1026690
Link To Document :
بازگشت