Title of article :
Artificial neural networks (ANNs) in the analysis of polycyclic aromatic hydrocarbons in water samples by synchronous fluorescence Original Research Article
Author/Authors :
R. Ferrer، نويسنده , , J. Guiteras، نويسنده , , J.L. Beltr?n، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1999
Pages :
9
From page :
261
To page :
269
Abstract :
Backpropagation artificial neural networks, principal component regression and partial least squares have been compared in order to establish the best multivariate calibration models for the analysis of mixtures of polycyclic aromatic hydrocarbons containing 10 of these compounds (anthracene, benz[a]anthracene, benzo[a]pyrene, chrysene, fluoranthene, fluorene, naphthalene, perylene, phenanthrene and pyrene). The synchronous fluorescence spectra (recorded at wavelength increments of 50 and 100 nm) of 85 standards, with concentrations ranging from 0 to 20 ng ml−1, have been used for this purpose.
Keywords :
PAHs , Artificial neural networks , partial least squares , principal component regression , Multivariate calibration , Synchronous spectrofluorimetry
Journal title :
Analytica Chimica Acta
Serial Year :
1999
Journal title :
Analytica Chimica Acta
Record number :
1027503
Link To Document :
بازگشت