Author/Authors :
Tim Ebbels، نويسنده , , Hector Keun، نويسنده , , Olaf Beckonert، نويسنده , , Henrik Antti، نويسنده , , Mary Bollard، نويسنده , , Elaine Holmes، نويسنده , , John Lindon، نويسنده , , Jeremy Nicholson، نويسنده ,
Abstract :
Predicting and avoiding the potential toxicity of candidate drugs is of fundamental importance to the pharmaceutical industry. The consortium for metabonomic toxicology (COMET) project aims to construct databases and metabolic models of drug toxicity using ca. 100,000 600 MHz 1H NMR spectra of biofluids from laboratory rats and mice treated with model toxic compounds. Chemometric methods are being used to characterise the time-related and dose-specific effects of toxins on the endogenous metabolite profiles. Here we present a probabilistic approach to the classification of a large data set of COMET samples using Classification Of Unknowns by Density Superposition (CLOUDS), a novel non-neural implementation of a classification technique developed from probabilistic neural networks.
Keywords :
Probabilistic classification , Probabilistic neural networks , Metabonomics , Toxicity prediction , Clouds