Title of article :
Catalytic activity of iron hexacyanoosmate(II) towards hydrogen peroxide and nicotinamide adenine dinucleotide and its use in amperometric biosensors Original Research Article
Author/Authors :
Petr Kotzian، نويسنده , , Tereza Jank?، نويسنده , , Kurt Kalcher، نويسنده , , Karel Vytras، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
7
From page :
287
To page :
293
Abstract :
Hydrogen peroxide and nicotinamide adenine dinucleotide (NADH) may be determined amperometrically using screen-printed electrodes chemically modified with iron(III) hexacyanoosmate(II) (Osmium purple) in flow injection analysis (FIA). The determination is based on the exploitation of catalytic currents resulting from the oxidation/reduction of the modifier. The performance of the sensor was characterized and optimized by controlling several operational parameters (applied potential, pH and flow rate of the phosphate buffer). Comparison has been made with analogous complexes of ruthenium (Ruthenium purple) and iron (Prussian blue). Taking into account the sensitivity and stability of corresponding sensors, the best results were obtained with the use of Osmium purple. The sensor exhibited a linear increase of the amperometric signal with the concentration of hydrogen peroxide in the range of 0.1–100 mg L−1 with a detection limit (evaluated as 3σ) of 0.024 mg L−1 with a R.S.D. 1.5% for 10 mg L−1 H2O2 under optimized flow rate of 0.4 mL min−1 in 0.1 M phosphate buffer carrier (pH 6) and a working potential of +0.15 V versus Ag/AgCl. Afterwards, a biological recognition element – either glucose oxidase or ethanol dehydrogenase – was incorporated to achieve a sensor facilitating the determination of glucose or ethanol, respectively. The glucose sensor gave linearity between current and concentration in the range from 1 to 250 mg L−1 with a R.S.D. 2.4% for 100 mg L−1 glucose, detection limit 0.02 mg L−1 (3σ) and retained its original activity after 3 weeks when stored at 6 °C. Optimal parameters in the determination of ethanol were selected as: applied potential +0.45 V versus Ag/AgCl, flow rate 0.2 mL min−1 in 0.1 M phosphate buffer carrier (pH 7). Different structural designs of the ethanol sensor were tested and linearity obtained was up to 1000 mg L−1 with a maximum R.S.D. of 5.1%. Applications in food analysis were also examined.
Keywords :
Flow injection analysis , Biosensor , Osmium purple , Ruthenium purple , Hydrogen peroxide , Glucose , Screen-printed electrodes , Ethanol , Prussian blue
Journal title :
Analytica Chimica Acta
Serial Year :
2007
Journal title :
Analytica Chimica Acta
Record number :
1031169
Link To Document :
بازگشت