Title of article :
Non-destructive and clean prediction of aviation fuel characteristics through Fourier transform-Raman spectroscopy and multivariate calibration Original Research Article
Author/Authors :
J.M. Andrade-Garda، نويسنده , , S Garrigues، نويسنده , , M de la Guardia، نويسنده , , Gomez-Carracedo، M. P. نويسنده , , D Prada، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
14
From page :
115
To page :
128
Abstract :
The combination of Fourier transform (FT)-Raman spectroscopy and partial least squares (PLS) regression is proposed to be used in off-line kerosene quality control. Here, six important physico-chemical properties have been studied: Abel flash point, initial boiling point (IBP), 10% of distilled sample, final boiling point (FBP), total percentage of aromatic compounds (% aromatics) and viscosity. The Raman spectra were obtained directly from standard 2 ml glass vials (12 mm×32 mm), using a Bruker RFS 100 FT-Raman spectrometer, equipped with a 1064 nm Nd:YAG laser and a Ge detector, in back-scattering mode and accumulating 25 scans (150 s acquisition time) with a laser power of 300 mW. All Raman spectra were unit normalized in order to avoid the influence of the laser power into the regression models. Different Raman shift spectral ranges have been evaluated, the 193.5–1688.1 cm−1 region being the most satisfactory one. Corrected standard errors of prediction of 1.9, 2.3, 2.8 °C, 0.19 cSt and 0.7% were obtained for flash point, IBP, FBP, viscosity and % aromatics, respectively. The influences of the glass vials, sample positioning and laser power have been studied, as well.
Keywords :
Kerosene , FT-Raman spectroscopy , PLS , Spectral unit normalization
Journal title :
Analytica Chimica Acta
Serial Year :
2003
Journal title :
Analytica Chimica Acta
Record number :
1033485
Link To Document :
بازگشت