Author/Authors :
Mousumi Palit، نويسنده , , Bipan Tudu، نويسنده , , Nabarun Bhattacharyya، نويسنده , , Ankur Dutta، نويسنده , , Pallab Kumar Dutta، نويسنده , , Arun Jana، نويسنده , , Rajib Bandyopadhyay، نويسنده , , Anutosh Chatterjee، نويسنده ,
Abstract :
In an electronic tongue, preprocessing on raw data precedes pattern analysis and choice of the appropriate preprocessing technique is crucial for the performance of the pattern classifier. While attempting to classify different grades of black tea using a voltammetric electronic tongue, different preprocessing techniques have been explored and a comparison of their performances is presented in this paper. The preprocessing techniques are compared first by a quantitative measurement of separability followed by principle component analysis; and then two different supervised pattern recognition models based on neural networks are used to evaluate the performance of the preprocessing techniques.
Keywords :
Preprocessing technique , Separability criterion , Artificial neural network , Electronic tongue , Principal component analysis