Title of article :
Corner multifractality for reflex angles and conformal invariance at 2D Anderson metal–insulator transition with spin–orbit scattering
Author/Authors :
H. Obuse، نويسنده , , A.R. Subramaniam، نويسنده , , A. Furusaki، نويسنده , , I.A. Gruzberg، نويسنده , , A.W.W. Ludwig، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2008
Abstract :
We investigate boundary multifractality of critical wave functions at the Anderson metal–insulator transition in two-dimensional disordered non-interacting electron systems with spin–orbit scattering. We show numerically that multifractal exponents at a corner with an opening angle θ=3π/2 are directly related to those near a straight boundary in the way dictated by conformal symmetry. This result extends our previous numerical results on corner multifractality obtained for θ<π to θ>π, and gives further supporting evidence for conformal invariance at criticality. We also propose a refinement of the validity of the symmetry relation of A.D. Mirlin et al. [Phys. Rev. Lett. 97 (2006) 046803] for corners.
Keywords :
Anderson transition , Multifractality , Conformal invariance , Spin–orbit interaction
Journal title :
Physica E Low-dimensional Systems and Nanostructures
Journal title :
Physica E Low-dimensional Systems and Nanostructures