Title of article :
PHENOMENOLOGICAL MODEL COMBINING DIPOLE-INTERACTION SIGNAL AND BACKGROUND EFFECTS FOR ANALYZING MODULATED DETECTION IN APERTURELESS SCANNING NEAR-FIELD OPTICAL MICROSCOPY
Author/Authors :
By C.-C. Liao and Y.-L. Lo ، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2011
Pages :
26
From page :
415
To page :
440
Abstract :
Modulation methods such as homodyne and heterodyne detections are employed in A-SNOM in order to eliminate serious background effects from scattering fields. Usually, the frequency-modulated detection signal in apertureless scanning near-field optical microscopy (A-SNOM) is generally analyzed using a simple dipole-interaction model based only on the near-field interaction. However, the simulated A-SNOM spectra obtained using such models are in poor agreement with the experimental results since the effects of background signals are ignored. Accordingly, this study proposes a new phenomenological model for analyzing the A-SNOM detection signal in which the effects of both the dipole-interaction and the background fields are taken into account. It is shown that the simulated A-SNOM spectra for 6H-SiC crystal and polymethylmethacrylate (PMMA) samples are in good agreement with the experimental results. The validated phenomenological model is used to identify the experimental A-SNOM parameter settings which minimize the effects of background signals and ensure that the detection signal approaches the pure near-field interaction signal. Finally, the phenomenological model is used to evaluate the effects of the residual stress and strain in a SiC substrate on the corresponding A-SNOM spectrum.
Journal title :
Progress In Electromagnetics Research
Serial Year :
2011
Journal title :
Progress In Electromagnetics Research
Record number :
1052561
Link To Document :
بازگشت