Title of article :
NONLINEAR MODELING OF TRAPPING AND THERMAL EFFECTS ON GaAs AND GaN MESFET/HEMT DEVICES
Author/Authors :
By M. Chaibi، نويسنده , , T. Fernandez، نويسنده , , A. Mimouni، نويسنده , , J. Rodriguez-Tellez، نويسنده , , A. Tazon، نويسنده , , and A. Mediavilla Sanchez ، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2012
Pages :
24
From page :
163
To page :
186
Abstract :
A novel nonlinear model for MESFET/HEMT devices is presented. The model can be applied to low power (GaAs) and high power (GaN) devices with equal success. The model provides accurate simulation of the static (DC) and dynamic (Pulsed) I-V characteristics of the device over a wide bias and ambient temperature range (from -70ºC to +70ºC) without the need of an additional electro-thermal sub-circuit. This is an important issue in high power GaN HEMT devices where self-heating and current collapse due to traps is a more serious problem. The parameter extraction strategy of the new model is simple to implement. The robustness of the model when performing harmonic balance simulation makes it suitable for RF and microwave designers. Experimental results presented demonstrate the accuracy of the model when simulating both the small-signal and large-signal behavior of the device over a wide range of frequency, bias and ambient temperature operating points. The model described has been implemented in the Advanced Design System (ADS) simulator to validate the proposed approach without convergence problems.
Journal title :
Progress In Electromagnetics Research
Serial Year :
2012
Journal title :
Progress In Electromagnetics Research
Record number :
1052898
Link To Document :
بازگشت