Author/Authors :
P. Wahl، نويسنده , , D. S. Ly Gagnon، نويسنده , , C. Debaes، نويسنده , , J. Van Erps، نويسنده , , N. Vermeulen، نويسنده , , D. A. B. Miller، نويسنده , , and H. Thienpont ، نويسنده ,
Abstract :
Numerical calculations based on finite-difference timedomain (FDTD) simulations for metallic nanostructures in a broad optical spectrum require an accurate modeling of the permittivity of dispersive materials. In this paper, we present the algorithms behind BCALM (Belgium-CAlifornia Light Machine), an open-source 3D-FDTD solver simultaneously operating on multiple Graphical Processing Units (GPUs) and efficiently utilizing multi-pole dispersion models while hiding latency in inter-GPU memory transfers. Our architecture shows a reduction in computing times for multi-pole dispersion models and an almost linear speed-up with respect to the amount of used GPUs. We benchmark B-CALM by computing the absorption efficiency of a metallic nanosphere in a broad spectral range with a six-pole Lorentz model and compare it with Mie theory and with a widely used Central Processing Unit (CPU)-based FDTD simulator.