Title of article :
Investigation of microstructure, hardness and wear properties of Al–4.5 wt.% Cu–TiC nanocomposites produced by mechanical milling
Author/Authors :
N. Nemati، نويسنده , , R. Khosroshahi، نويسنده , , M. Emamy، نويسنده , , A. Zolriasatein، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2011
Pages :
12
From page :
3718
To page :
3729
Abstract :
The present work deals with studies on the manufacturing and investigation of mechanical and wear behavior of aluminum alloy matrix composites (AAMCs), produced using powder metallurgy technique of ball milled mixing in a high energy attritor and using a blend–press–sinter methodology. Matrix of pre-mechanical alloyed Al–4.5 wt.% Cu was used to which different fractions of nano and micron size TiC reinforcing particles (ranging from 0 to 10 wt.%) were added. The powders were mixed using a planetary ball mill. Consolidation was conducted by uniaxial pressing at 650 MPa. Sintering procedure was done at 400 °C for 90 min. The results indicated that as TiC particle size is reduced to nanometre scale and the TiC content is increased up to optimum levels, the hardness and wear resistance of the composite increase significantly, whereas relative density, grain size and distribution homogeneity decrease. Using micron size reinforcing particulates from 5% to 10 wt.%, results in a significant hardness reduction of the composite from 174 to 98 HVN. Microstructural characterization of the as-pressed samples revealed reasonably uniform distribution of TiC reinforcing particulates and presence of minimal porosity. The wear test disclosed that the wear resistance of all specimens increases with the addition of nano and micron size TiC particles (up to 5 wt.%). Scanning electron microscopic observation of the worn surfaces was conducted and the dominant wear mechanism was recognized as abrasive wear accompanied by some delamination wear mechanism.
Keywords :
A. Metal matrix composite , C. Mechanical alloying , E. Wear
Journal title :
Materials and Design
Serial Year :
2011
Journal title :
Materials and Design
Record number :
1069881
Link To Document :
بازگشت