Title of article :
Prediction of critical cooling rate for glass forming alloys by artificial neural network
Author/Authors :
A.H. Cai، نويسنده , , Y. Liu، نويسنده , , W.K. An، نويسنده , , G.J. Zhou، نويسنده , , Y. Luo، نويسنده , , T.L. Li، نويسنده , , X.S. Li، نويسنده , , X.F. Tan، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2013
Pages :
6
From page :
671
To page :
676
Abstract :
A radial basis function artificial neural network (RBFANN) model was established for the simulation and prediction of critical cooling rate Rc of glass forming alloys. The RBFANN model was trained, learned and examined using the data from the published literature as well as own experimental data. The performance of RBFANN model is examined by the linearly dependent coefficient between the predicted Rc and the corresponding experimental/calculated one; the influence of the type of alloys and elements and the large and minor change of element content on the Rc. In addition, a group of Zr–Al–Ni–Cu metallic glasses were designed and their Rcs were predicted by the RBFANN model. The results show that the established RBFANN model is reliable and adequate and can be used to design the composition and predict the Rc of glass forming alloys since the predicted Rc is inherent with the experimental/calculated one.
Journal title :
Materials and Design
Serial Year :
2013
Journal title :
Materials and Design
Record number :
1073569
Link To Document :
بازگشت