Title of article :
Heat transfer and pressure drop in furrowed channels with transverse and skewed sinusoidal wavy walls
Author/Authors :
Shyy Woei Chang، نويسنده , , Arthur William Lees، نويسنده , , Tsu Chien Chou، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
12
From page :
4592
To page :
4603
Abstract :
This comparative study examines the detailed Nusselt number (Nu) distributions, pressure drop coefficients (f) and thermal performance factors (η) for two furrowed rectangular channels with transverse and skewed sinusoidal wavy walls. Detailed heat transfer measurements over these transverse and skewed sinusoidal wavy walls at the Reynolds numbers (Re) = 1000, 1500, 2000, 5000, 10,000, 15,000, 20,000, 25,000 and 30,000 are performed using the steady-state infrared thermo-graphic method. Impacts of Re on Nu and f for two tested furrowed channels with transverse and skewed waviness are individually examined. In addition to the macroscopic mixing between the near-wall recirculations and core flows due to the shear layer instabilities in each wavy channel, the secondary flows tripped by the skewed wall-waves further elevate heat transfer performances and distinguish their Nu distributions from those over the transverse wavy wall. The area-averaged Nusselt numbers (image) for two tested furrowed channels with transverse and skewed waviness with 5000 < Re < 30000 fall, respectively, in the ranges of 3.45–3.71 and 3.98–4.2 times of the Dittus–Boelter levels. A set of image and f correlations for each tested furrowed channel is individually derived using Re as the controlling parameter. By way of comparing the thermal performance factors (η) with a selection of rib-roughened channels, the η factors for the present skewed wavy channel are compatible with those in the channel roughened by the compound V-ribs and deepened scales due to the relative low pressure drop penalties with the equivalent heat transfer augmentations to those offered by V-ribs.
Keywords :
Skewed transverse wavy wall , Furrowed channels
Journal title :
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER
Serial Year :
2009
Journal title :
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER
Record number :
1076241
Link To Document :
بازگشت