Title of article :
Nanofluid convective heat transfer in a parallel-disk system
Author/Authors :
Yu Feng، نويسنده , , Clement Kleinstreuer، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
10
From page :
4619
To page :
4628
Abstract :
Inherently low thermal conductivities of basic fluids form a primary limitation in high-performance cooling which is an essential requirement for numerous thermal systems and micro-devices. Nanofluids, i.e., dilute suspensions of, say, metal-oxide nanoparticles in a liquid, are a new type of coolants with better heat transfer performances than their pure base fluids alone. Using a new, experimentally validated model for the thermal conductivity of nanofluids, numerical simulations have been executed for alumina-water nanofluid flow with heat transfer between parallel disks. The results indicate that, indeed, nanofluids are promising new coolants when compared to pure water. Specifically, smoother mixture flow fields and temperature distributions can be achieved. More importantly, given a realistic thermal load, the Nusselt number increases with higher nanoparticle volume fraction, smaller nanoparticle diameter, reduced disk-spacing, and, of course, larger inlet Reynolds number, expressed in a novel form as Nu = Nu(Re and Br). Fully-developed flow can be assumed after a critical radial distance, expressed in a correlation Rcrit = fct(Re), has been reached and hence analytic solutions provide good approximations. Nanofluids reduce the system’s total entropy generation rate while hardly increasing the required pumping power for any given Rein. Specifically, minimization of total entropy generation allows for operational and geometric system-optimization in terms of Sgen = fct (Re and δ).
Keywords :
Wall temperature control , Entropy generation , Impinging-jet , Parallel disk , Nanofluid , convective heat transfer
Journal title :
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER
Serial Year :
2010
Journal title :
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER
Record number :
1076865
Link To Document :
بازگشت