Title of article :
On Euclid’s algorithm and elementary number theory
Author/Authors :
Roland Backhouse، نويسنده , , Jo?o F. Ferreira، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2011
Abstract :
Algorithms can be used to prove and to discover new theorems. This paper shows how algorithmic skills in general, and the notion of invariance in particular, can be used to derive many results from Euclid’s algorithm. We illustrate how to use the algorithm as a verification interface (i.e., how to verify theorems) and as a construction interface (i.e., how to investigate and derive new theorems).The theorems that we verify are well-known and most of them are included in standard number-theory books. The new results concern distributivity properties of the greatest common divisor and a new algorithm for efficiently enumerating the positive rationals in two different ways. One way is known and is due to Moshe Newman. The second is new and corresponds to a deforestation of the Stern–Brocot tree of rationals. We show that both enumerations stem from the same simple algorithm. In this way, we construct a Stern–Brocot enumeration algorithm with the same time and space complexity as Newman’s algorithm. A short review of the original papers by Stern and Brocot is also included.
Keywords :
Rational number , greatest common divisor , number theory , Calculational method , Euclid’s algorithm , Eisenstein array , Invariant , Algorithm derivation , Eisenstein–Stern tree (aka Calkin–Wilf tree) , Enumeration algorithm , Stern–Brocot tree
Journal title :
Science of Computer Programming
Journal title :
Science of Computer Programming