Title of article :
Blowup and dissipation in a critical-case unstable thin film equation
Author/Authors :
WITELSKI، T. P. نويسنده , , J. BERNOFF، A. نويسنده , , L. BERTOZZI، A. نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Abstract :
We study the dynamics of dissipation and blow-up in a critical-case unstable thin film equation. The governing equation is a nonlinear fourth-order degenerate parabolic PDE derived from a generalized model for lubrication flows of thin viscous fluid layers on solid surfaces. There is a critical mass for blow-up and a rich set of dynamics including families of similarity solutions for finitetime blow-up and infinite-time spreading. The structure and stability of the steady-states and the compactly-supported similarity solutions is studied.
Keywords :
Hardy space , inner function , subspace , Hilbert transform , admissible majorant , model , shift operator
Journal title :
EUROPEAN JOURNAL OF APPLIED MATHEMATICS
Journal title :
EUROPEAN JOURNAL OF APPLIED MATHEMATICS