Title of article :
G-Uniform Scalar Integrability and Strong Laws of Large Numbers for Pettis Integrable Functions with Values in a Separable Locally Convex Space
Author/Authors :
Charles Castaing، نويسنده , , Fitte، Paul Raynaud de نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Abstract :
Generalizing techniques developed by Cuesta and Matran for Bochner integrable random vectors of a separable Banach space, we prove a strong law of large numbers for Pettis integrable random elements of a separable locally convex space E. This result may be seen as a compactness result in a suitable topology on the set of Pettis integrable probabilities on E.
Keywords :
Pettis , G-uniformly scalarly integrable , Skorokhods representation , Young measures , Levy-Wasserstein metric , strong law of large numbers , Kantorovich functional , pairwise independent
Journal title :
JOURNAL OF THEORETICAL PROBABILITY
Journal title :
JOURNAL OF THEORETICAL PROBABILITY