Title of article :
The Metric of Large Deviation Convergence
Author/Authors :
Tiefeng Jiang، نويسنده , , George L. OBrien، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Pages :
-804
From page :
805
To page :
0
Abstract :
We construct a metric space of set functions ( Q(x), d) such that a sequence {P n} of Borel probability measures on a metric space ( X, d*) satisfies the full Large Deviation Principle (LDP) with speed {a n} and good rate function I if and only if the sequence {P an n} converges in ( Q(X), d) to the set function e –I . Weak convergence of probability measures is another special case of convergence in ( Q(X), d). Properties related to the LDP and to weak convergence are then characterized in terms of ( Q(x), d).
Keywords :
Large deviations , metric spaces
Journal title :
JOURNAL OF THEORETICAL PROBABILITY
Serial Year :
2000
Journal title :
JOURNAL OF THEORETICAL PROBABILITY
Record number :
108270
Link To Document :
بازگشت