Title of article :
A Signed Generalization of the Bernoulli–Laplace Diffusion Model
Author/Authors :
Clyde H. Schoolfield Jr.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
-96
From page :
97
To page :
0
Abstract :
We bound the rate of convergence to stationarity for a signed generalization of the Bernoulli–Laplace diffusion model; this signed generalization is a Markov chain on the homogeneous space ( Z2(wreath product)S n )/(S r *S n–r ). Specifically, for r not too far from n/2, we determine that, to first order in n, n log n steps are both necessary and sufficient for total variation distance to become small. Moreover, for r not too far from n/2, we show that our signed generalization also exhibits the “cutoff phenomenon.”
Keywords :
Bernouilli–Laplace diffusion  , Markov chain  , hyperoctahedral group  , homogeneous space  , Fourier transform
Journal title :
JOURNAL OF THEORETICAL PROBABILITY
Serial Year :
2002
Journal title :
JOURNAL OF THEORETICAL PROBABILITY
Record number :
108339
Link To Document :
بازگشت