Title of article :
Characterisation of wear debris from UHMWPE on zirconia ceramic, metal-on-metal and alumina ceramic-on-ceramic hip prostheses generated in a physiological anatomical hip joint simulator
Author/Authors :
J.L Tipper، نويسنده , , P.J Firkins، نويسنده , , A.A Besong، نويسنده , , P.S.M Barbour، نويسنده , , J Nevelos، نويسنده , , M.H. Stone، نويسنده , , E Ingham، نويسنده , , J Fisher، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2001
Abstract :
There is currently much interest in the characterisation of wear debris from different types of artificial hip joints. There have been numerous studies on the wear of UHMWPE in hip joint simulators, but relatively few studies on the wear of alternative materials such as metal-on-metal (MOM) and ceramic-on-ceramic (COC). The aim of this study was to compare the wear volumes and wear debris generated from zirconia ceramic-on-UHMWPE, MOM and COC hip joints under identical conditions in the same hip joint simulator.
All prostheses showed an initial higher ‘bedding in’ wear rate, which was followed by a lower steady state wear rate. The zirconia ceramic-on UHMWPE prostheses showed the highest wear rates (31±4.0 mm3/million cycles), followed by the MOM (1.23±0.5 mm/million cycles), with the COC prostheses showing significantly (P<0.01) lower wear rates at 0.05±0.02 mm3/million cycles. The mode (±95% confidence limits) of the size distribution of the UHMWPE wear debris was 300±200, 30±2.25 nm for the metal particles, and 9±0.5 nm for the ceramic wear particles. The UHMWPE particles were significantly larger (P<0.05) than the metal and ceramic wear particles, and the metal particles were significantly larger (P<0.05) than the ceramic wear particles. A variety of morphologies and sizes were observed for the UHMWPE wear particles, including submicrometer granules and large flakes in excess of 50 μm. However, the wear particles generated in both the MOM and COC articulations were very uniform in size and oval or round in shape.
This investigation has demonstrated substantial differences in volumetric wear. The in vitro wear rates for the zirconia-on-UHMWPE and MOM are comparable with clinical studies and the UHMWPE and metal wear particles were similar to the wear debris isolated from retrieved tissues. However, the alumina/alumina wear rate was lower than some clinical retrieval studies, and the severe wear patterns and micrometer-sized particles described in vivo were not reproduced here.
This study revealed significant differences in the wear volumes and particle sizes from the three different prostheses. In addition, this study has shown that the alternative bearing materials such as MOM and COC may offer a considerable advantage over the more traditional articulations which utilise UHMWPE as a bearing material, both in terms of wear volume and osteolytic potential.
Keywords :
Wear , simulation , Hip prostheses , Wear debris