Author/Authors :
Chao Zhang، نويسنده , , Kevan M. Shokat، نويسنده ,
Abstract :
The ability to inhibit any protein kinase of interest with a small molecule is enabled by a combination of genetics and chemistry. Genetics is used to modify the active site of a single kinase to render it distinct from all naturally occurring kinases. Next, organic synthesis is used to develop a small molecule, which does not bind to wild-type kinases but is a potent inhibitor of the engineered kinase. This approach, termed chemical genetics, has been used to generate highly potent mutant kinase-specific inhibitors based on a pyrazolopyrimidine scaffold. Here, we asked if the selectivity of the resulting pyrazolopyrimidines could be improved, as they inhibit several wild-type kinases with low-micromolar IC50 values. Our approach to improve the selectivity of allele-specific inhibitors was to explore a second kinase inhibitor scaffold. A series of 6,9-disubstituted purines was designed, synthesized, and evaluated for inhibitory activity against several kinases in vitro and in vivo. Several purines proved to be potent inhibitors against the analog-sensitive kinases and exhibited greater selectivity than the existing pyrazolopyrimidines.