Title of article :
Methods to improve the neural network performance in suspended sediment estimation
Author/Authors :
H. Kerem Cigizoglu b، نويسنده , , Tefaruk Haktanir and Ozgur Kisi ، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
18
From page :
221
To page :
238
Abstract :
The effect of employment of different methods of suspended sediment estimation by artificial neural networks (ANNs) was the concern of the presented study. It was seen that the initial statistical analysis of flow and sediment data provided valuable information about the appropriate number of input nodes of the neural network, thereby avoiding redundant nodes. The k-fold partitioning of the training data set showed that similar or even superior sediment estimation performances can be obtained with quite limited data provided that the training data statistics of the subset are close to those of the testing data. The range-dependent neural network (RDNN) was found to be superior to conventional ANN applications, where only a single network is trained considering the entire training data set. It was seen that both low and high-observed sediment values were closely approximated by the RDNN.
Keywords :
Range-dependent neural networks , Suspended sediment , k-fold partitioning , River flow
Journal title :
Journal of Hydrology
Serial Year :
2006
Journal title :
Journal of Hydrology
Record number :
1098740
Link To Document :
بازگشت