Title of article :
Two-dimensional flow-through microcosms – Versatile test systems to study biodegradation processes in porous aquifers
Author/Authors :
Robert D. Bauer، نويسنده , , Massimo Rolle، نويسنده , , Petra Kürzinger، نويسنده , , Peter Grathwohl، نويسنده , , Rainer U. Meckenstock، نويسنده , , Christian Griebler، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Abstract :
A fundamental prerequisite of any remedial activity is a sound knowledge of both the biotic and abiotic processes involved in transport and degradation of contaminants. Investigations of these aspects in situ often seem infeasible due to the complexity of interacting processes. A simplified portrayal of nature can be facilitated in laboratory-based two-dimensional (2D) sediment flow-through microcosms. This paper describes the versatility of such simple aquifer model systems with respect to biodegradation of aromatic hydrocarbons, i.e. toluene and ethylbenzene, under various environmental conditions. Initially constructed to study non-reactive and bioreactive transport of organic contaminants in homogeneous porous media under steady state hydraulic conditions, experimental setups developed towards more realistic heterogeneous sediment packing and transient hydraulic conditions. High-resolution spatial and temporal sampling allowed to obtain new insights on the distribution of bioactivities in contaminant plumes and associated controlling and limiting factors. Major biodegradation activities in saturated porous sediments are located at the fringes of contaminant plumes and are driven by dispersive mixing. These hot-spots of contaminant biotransformation are characterized by steep physical–chemical gradients in the millimeter to centimeter range. Sediment heterogeneity, i.e. high-conductivity zones, was shown to significantly enhance transverse mixing and subsequently biodegradation. On the contrary, transient hydraulic conditions may generate intermediate disturbances to biodegrader populations and thus may interfere with optimized contaminant conversion. However, a bacterial strain aerobically degrading toluene, i.e. Pseudomonas putida F1, was shown to adapt to vertically moving contaminant plumes, in the way that it regained full biodegradation potential two-times faster in areas with a mid-term (days to weeks) contamination history than in areas not contaminated before. The 2D flow-through microcosms facilitated to combine a number of physicochemical and microbiological methods, such as high-resolution non-invasive oxygen measurements, conservative tracer tests, compound-specific isotope analysis (CSIA), fluorescence in situ hybridization (FISH), and numerical transport modelling, to name a few. Moreover, due to the defined and well-controlled operating conditions, these bench-scale flow-through systems allow to investigate theoretical concepts and to develop and test predictive models. They represent a valuable tool in helping to bridge the current knowledge gap concerning transport and degradation of contaminants in groundwater from the small-scale (i.e. oversimplified batch systems, disregarding transport processes) to the highly complex field conditions. The promising potential of applications is by far not exhausted. Further possibilities include testing ecological theories such as the resource-ratio theory, island biogeography, area-species richness relationships and relations between community structure, microbial abundance and process rates as well as the importance and effects of bacterial chemotaxis.
Keywords :
Natural attenuation , 2D flow-through system/microcosm , Monoaromatic hydrocarbons , Biodegradation , Transverse dispersion , Mixing-controlled reactive transport
Journal title :
Journal of Hydrology
Journal title :
Journal of Hydrology