Abstract :
This study investigated the rejection of salt and inert organic compounds by reverse osmosis membranes during the initial stage of colloidal fouling. Results of laboratory-scale experiments showed that colloidal fouling caused a marked decrease in flux, salt rejection and rejection of organics with molecular weight (MW) smaller than about 100 g/mol. Removal of neutrally charged organics was mainly by size or steric exclusion. Rejection of xylose, which has MW >100 g/mol, was not affected much by colloidal fouling. The decrease in salt and low MW organic rejections during the initial stage of colloidal fouling was attributed to cake-enhanced concentration polarization, whereby the colloidal cake layer hindered back diffusion of solutes from the membrane surface to the bulk solution, resulting in higher solute concentration gradient across the membrane. At higher channel wall shear rate, the rates of colloidal deposition, flux decline, decrease in salt rejection, and decrease in low MW organic rejection were lower.
Keywords :
Organic rejection , Cake-enhancedconcentration polarization , Reverse osmosis , Flux decline , Salt rejection , Colloidal fouling