Title of article :
Conjectures on the normal covering number of finite symmetric and alternating groups
Author/Authors :
بوبولوني، دانيلا نويسنده Dipartimento di Scienze per lEconomia e lImpresa, University of Firenze, Via delle Pandette 9-D6, 50127 Firenze, Italy Bubboloni, Daniela , پريگر، شريل اي. نويسنده Centre for Mathematics of Symmetry and Computation, School of Mathematics and Statistics, The University of Western Australia, Crawley, WA 6009, Austr Praeger, Cheryl E. , اسپيگا، پابلو نويسنده Dipartimento di Matematica e Applicazioni, University of Milano-Bicocca, Via Cozzi 53, 20125 Milano, Italy Spiga, Pablo
Issue Information :
فصلنامه با شماره پیاپی 0 سال 2014
Pages :
19
From page :
57
To page :
75
Abstract :
Let gamma(Sn) be the minimum number of proper subgroups Hi, i = 1,...,ell, of the symmetric group Sn such that each element in Sn lies in some conjugate of one of the Hi. In this paper we conjecture that gamma(Sn) =(n/2)(1-1/p_1) (1-1/p_2) + 2, where p1, p2 are the two smallest primes in the factorization of n and n is neither a prime power nor a product of two primes. Support for the conjecture is given by a previous result for the case where n has at most two distinct prime divisors. We give further evidence by confirming the conjecture for certain integers of the form n = 15q, for an infinite set of primes q, and by reporting on a Magma computation. We make a similar conjecture for gamma(An), when n is even, and provide a similar amount of evidence.
Journal title :
International Journal of Group Theory
Serial Year :
2014
Journal title :
International Journal of Group Theory
Record number :
1109283
Link To Document :
بازگشت