Author/Authors :
A. Centeno، نويسنده , , C. Blanco، نويسنده , , R. Santamaria، نويسنده , , M. Granda، نويسنده , , R. Menéndez، نويسنده ,
Abstract :
Raman spectroscopy and X-ray diffraction are used to study the crystalline structure of carbon–carbon and TiC-containing composites. The advantages and drawbacks of these techniques for the characterisation of carbon–carbon composites are analysed in the light of the distribution and arrangement of their components and the microstructural orientation of the supporting matrix. Analyses performed on longitudinal and transverse sections of the composites confirm that the measurements are affected by the orientation of the crystals. The overall crystalline parameters calculated by X-ray diffraction were unequivocally resolved for each single component by means of Raman spectroscopy. A significantly higher degree of order was observed in the TiC-containing matrix as a result of the catalytic graphitisation of the carbon achieved by the addition of titanium. In addition, Raman spectroscopy corroborated that the incorporation of TiC into the carbon matrix does not disrupt the orientation of the graphene planes of the matrix parallel to the fibre axis, a necessary characteristic for achieving an optimum heat transfer through the material.