Title of article :
A thermodynamic approach to assess organic solute adsorption onto activated carbon in water Original Research Article
Author/Authors :
David J. de Ridder، نويسنده , , Arne R.D. Verliefde، نويسنده , , Bas G.J. Heijman، نويسنده , , Simon Gelin، نويسنده , , Manuel F.R. Pereira، نويسنده , , Raquel P. Rocha، نويسنده , , José L. Figueiredo، نويسنده , , Gary L. Amy، نويسنده , , Hans C. van Dijk، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
8
From page :
3774
To page :
3781
Abstract :
In this paper, the hydrophobicity of 13 activated carbons is determined by various methods; water vapour adsorption, immersion calorimetry, and contact angle measurements. The quantity and type of oxygen-containing groups on the activated carbon were measured and related to the methods used to measure hydrophobicity. It was found that the water-activated carbon adsorption strength (based on immersion calorimetry, contact angles) depended on both type and quantity of oxygen-containing groups, while water vapour adsorption depended only on their quantity. Activated carbon hydrophobicity measurements alone could not be related to 1-hexanol and 1,3-dichloropropene adsorption. However, a relationship was found between work of adhesion and adsorption of these solutes. The work of adhesion depends not only on activated carbon–water interaction (carbon hydrophobicity), but also on solute–water (solute hydrophobicity) and activated carbon–solute interactions. Our research shows that the work of adhesion can explain solute adsorption and includes the effect of hydrogen bond formation between solute and activated carbon.
Journal title :
Carbon
Serial Year :
2012
Journal title :
Carbon
Record number :
1124233
Link To Document :
بازگشت