Author/Authors :
Hae Kyung Jeong، نويسنده , , Lingmei Hong، نويسنده , , Xin Zhang، نويسنده , , Eduardo Vega، نويسنده , , P.A. Dowben، نويسنده ,
Abstract :
We present the electronic structure of graphite oxide in the vicinity of the Fermi level measured using ultraviolet photoemission and inverse photoemission spectroscopies and compare it with X-ray absorption spectra. The expected p-type behavior of graphite oxide is not observed at the surface and the presence of band bending is invoked. The observed electronic structure of graphite oxide exhibited an n-type semiconducting band structure with a band gap of 2.3 ± 0.4 eV. An oxygen related state, at 0.8 eV above Fermi level, and the suppression of the unoccupied carbon weighted states at the conduction band minimum suggests that the oxygen vacancies at the surface of graphite oxide contribute to the n-type semiconducting electronic structure of the surface.