Title of article :
Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC)
Author/Authors :
Mathew، Aji P. نويسنده , , Oksman، Kristiina نويسنده , , Sain، Mohini نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2005
Abstract :
Biodegradable composites were prepared using microcrystalline cellulose (MCC) as the reinforcement and polylactic acid (PLA) as a matrix. PLA is polyester of lactic acid and MCC is cellulose derived from high quality wood pulp by acid hydrolysis to remove the amorphous regions. The composites were prepared with different MCC contents, up to 25 wt %, and wood flour (WF) and wood pulp (WP) were used as reference materials. Generally, the MCC/PLA composites showed lower mechanical properties compared to the reference materials. The dynamic mechanical thermal analysis (DMTA) showed that the storage modulus was increased with the addition of MCC. The X-ray diffraction (XRD) studies on the materials showed that the composites were less crystalline than the pure components. However, the scanning electron microscopy (SEM) study of materials showed that the MCC was remaining as aggregates of crystalline cellulose fibrils, which explains the poor mechanical properties. Furthermore, the fracture surfaces of MCC composites were indicative of poor adhesion between MCC and the PLA matrix. Biodegradation studies in compost soil at 58°C showed that WF composites have better biodegradability compared to WP and MCC composites. The composite performances are expected to improve by separation of the cellulose aggregates to microfibrils and with improved adhesion.
Keywords :
morphology , dynamic mechanical thermal properties , mechanical properties , microcrystalline cellulose , bio-composites
Journal title :
JOURNAL OF APPLIED POLYMER SCIENCE
Journal title :
JOURNAL OF APPLIED POLYMER SCIENCE