Title of article :
Lithium-induced changes in gravicurvature, statocyte ultrastructure and calcium balance of pea roots Original Research Article
Author/Authors :
N.A. Belyavskaya، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2001
Pages :
6
From page :
961
To page :
966
Abstract :
Calcium signaling has been implicated in plant graviperception. In order to investigate the role of intracellular calcium in the process, I used lithium ions (LiCl), which suppress inositol 1,4,5-trisphosphate (IP3) cycling and signaling by inhibiting inositol-1-phosphatase. After 4 h of gravistimulation, no curvature was observed in 81% of the roots of 5-day Pisum sativum seedlings pretreated with 5 mM LiCl. Structural features of statocyte ultrastructure in these roots were the following: loss of a cellular polarity, appearance of amyloplast clusters, condensed mitochondria, local dilations in a perinuclear space, increases in a relative volume of vacuoles. The intensity of a cytochemical reaction (pyroantimonate staining which detected Ca2+ ions) was moderate: the Ca2+ pyroantimonate deposits were observed in all organelles. There were few granules of this precipitate in a hyaloplasm of the statocytes. Mitochondria and vacuoles were found to contain more granules of the precipitate compared with the controls. Additionally, Ca2+-ATPase activity in the statocytes of pea roots pretreated with LiCl was approximately the same as in control roots. Data obtained by using inhibitor of inositol signaling suggest that the observed effects of LiCl on root gravicurvature and ultrastructure of root statocytes were due to effects on Ca2+ homeostasis, particularly on IP3-mediated release of intracellular Ca2+ which can be inhibited by inositol depletion. The work demonstrates the key role played by second messengers (Ca2+ and IP3) in a gravity perception and response.
Journal title :
Advances in Space Research
Serial Year :
2001
Journal title :
Advances in Space Research
Record number :
1127393
Link To Document :
بازگشت