Abstract :
The LARETS satellite was launched on September 26, 2004, into a circular orbit at an altitude of 690 km and with an inclination of 98.2°. This mission is a successor to the WESTPAC satellite which was launched to an altitude of 835 km six years before. The study is based on the observations taken by the global network of laser stations during the period from December 30, 2003 to March 17, 2004 for LARETS. This study is aimed at the precise orbit computation of LARETS.The experience acquired during the orbit estimation of WESTPAC was applied to the orbit investigation of LARETS. The WESTPAC was merely used for reference and initial parameters of the force model [Rutkowska, M., Noomenn, R., Global orbit analysis of the satellite WESTPAC, Adv. Space Res., 30(2), 265–270, 2002]. The orbit of LARETS was estimated with an rms-of-fit to the SLR measurements of 3.9 cm, using the following computation model: the CSR TEG-4 gravity field up to degree and order (200,200), the Ray tide model, the MSIS86 model for atmospheric density [Hedin, A.E., MSIS-86 Thermospheric Model, J. Geophys. Res., 92 (A5), 4649–4662, 1987], and the solution of 8-hourly CD-values. It has been verified that the modeling of the gravity field up to degree and order (100,100) which gives the same rms-of-fit value. Estimated orbits for both satellites are compared to each other in . All computations are performed with the NASA program GEODYN II [Eddy, W.F, McCarthy, J.J., Pavlis, D.E., Marshall, J.A., Luthce, S.B., Tsaoussi, L.S., GEODYN II System Operations Manual, vol. 1–5, ST System Corp., Lanham MD, USA, 1990].
Keywords :
Satellite orbit , Low-orbit satellites , LARETS , WESTPAC