Title of article :
Abiotic formation of acylglycerols under simulated hydrothermal conditions and self-assembly properties of such lipid products
Original Research Article
Author/Authors :
Bernd R.T. Simoneit، نويسنده , , Ahmed I. Rushdi، نويسنده , , David W. Deamer، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2007
Abstract :
The abiotic formation of aliphatic lipid compounds (i.e., fatty acids, alcohols, and acylglycerols) has been reported to occur at elevated temperatures and pressures under simulated hydrothermal conditions. Although abiotic synthetic chemistry can occur under these conditions, the prebiotic self-assembly of micelles to bilayer to vesicles (protocells) may have occurred elsewhere. Amphiphilic compounds such as fatty acids are important candidates for micelle/bilayer/vesicle formation, because they are abundant products of Fischer–Tropsch-type reactions and are also found in carbonaceous meteorites. Thus, it is of interest to determine whether more complex amphiphilic precursor compounds, capable of assembling into stable membrane structures, can be synthesized under hydrothermal conditions. Hydrothermal experiments were conducted to study condensation reactions of model lipid precursors in aqueous media, i.e., glycerol and alkanoic acids, to form acylglycerols (glyceryl alkanoates) at elevated temperature under confining pressure. Nine different alkanoic acids ranging from C7 to C16 (except C8) were used in these experiments. The condensation products were two isomers each of monoacylglycerols and diacylglycerols, as well as the corresponding triacylglycerol. The results indicated that: (1) condensation (dehydration) reactions are possible under aqueous pyrolysis conditions; (2) abiotic synthesis and subsequent condensation reactions of aliphatic lipid compounds are possible under hydrothermal conditions; and (3) such molecules have robust properties of self-assembly into membranous structures that would be suitable boundary structures for primitive forms of cellular life.
Keywords :
Lipids , Acylglycerols , Self-assembly , Hydrothermal conditions , Abiotic formation
Journal title :
Advances in Space Research
Journal title :
Advances in Space Research