Title of article :
The use of Gaussian equations of motions of a satellite for local gravity anomaly recovery Original Research Article
Author/Authors :
Mehdi Eshagh، نويسنده , , Morteza Ghorbannia، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2013
Abstract :
The orbital elements of a low Earth orbiting satellite and their velocities can be used for local determination of gravity anomaly. The important issue is to find direct relations among the anomalies and these parameters. Here, a primary theoretical study is presented for this purpose. The Gaussian equations of motion of a satellite are used to develop integral formulas for recovering the gravity anomalies. The behaviour of kernels of the integrals are investigated for a two-month simulated orbit similar to that of the Gravity field and steady-state ocean circulation explorer (GOCE) mission over Fennoscandia. Numerical investigations show that the integral formulas have neither isotropic nor well-behaved kernels. In such a case, gravity anomaly recovery is not successful due to large spatial truncation error of the integral formulas. Reformulation of the problem by combining the orbital elements and their velocities leads to an integral with a well-behaved kernel which is suitable for our purpose. Also based on these combinations some general relations among the orbital elements and their velocities are obtained which can be used for validation of orbital parameters and their velocities.
Keywords :
Gaussian equations , Gravity anomaly , Integral inversion , Kernel behaviour , Orbital element velocities
Journal title :
Advances in Space Research
Journal title :
Advances in Space Research