Title of article :
Analysis of problem in mathematical model for shadowed sputtering Original Research Article
Author/Authors :
L.A. Sevastianov، نويسنده , , E.P. Zhidkov، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2000
Pages :
7
From page :
47
To page :
53
Abstract :
A mathematical model for shadowed sputtering is an integral equation ∫Q2db A(b,c)X(b+c,b)=Y(c), c∈Q1 using compact supports Q1 , Q2 of dimension 2 and exploiting a function of sputtered layer Y∈L2(Q1) , a source function X∈C(Q2×Q1) and a musk function A∈L2(Q1×Q2) . In frame of a given model there exist three problems: – a straight problem of predicting Y using given A and X ; – an auxiliary inverse problem of restoring X using experimentally given A and Y ; – a main inverse problem of synthesis the shadowing mask parameters and a mask function A using restored X and prescribed Y . Properties of integral operator of these problems let solving in a stable manner both inverse problems. Besides the methods of their solving and their properties make it possible to approach a predicted function of a sputtered layer with any given accuracy.
Keywords :
integral operator , operator equation , Inverse problem , Regularization , Completely continuous , Everywhere dense
Journal title :
Computer Physics Communications
Serial Year :
2000
Journal title :
Computer Physics Communications
Record number :
1135450
Link To Document :
بازگشت