Title of article :
Numerical simulation of periodic and quasiperiodic solutions for nonautonomous Hamiltonian systems via the scheme preserving weak invariance Original Research Article
Author/Authors :
Jialin Hong، نويسنده , , Ying Liu، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2000
Abstract :
If X(t) is a fundamental matrix of the linear nonautonomous Hamiltonian system dx/dt=JA(t)x(∗) with X(0)TJX(0)=J, then X(t)TJX(t)=J for every t∈R. This symplectic property is called the weak invariance of the system (∗). In this paper we first set up some numerical schemes preserving the weak invariance of the system (∗) for numerical computation of the fundamental matrix X(t) with X(0)TJX(0)=J. Based on the above schemes, we give an algorithm of numerically periodic and numerically quasiperiodic solutions for the nonautonomous Hamiltonian system by using the exponential dichotomy of linear differential systems.
Keywords :
Weak invariances , Symplectic schemes , Numerical quasiperiodic solutions , Nonautonomous Hamiltonian systems , Exponential dichotomies
Journal title :
Computer Physics Communications
Journal title :
Computer Physics Communications