Title of article :
An advanced evolutionary algorithm for parameter estimation of the discrete Kalman filter Original Research Article
Author/Authors :
Zeke S.H. Chan، نويسنده , , H.W. Ngan، نويسنده , , Y.F. Fung، نويسنده , , A.B. Rad، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2001
Pages :
7
From page :
248
To page :
254
Abstract :
In this work we design an advanced Evolutionary Algorithm (EA) for optimizing the discrete Kalman filter (KF) model. The EA employs parallel architecture and an advanced mutation operator called the “Selection Follower”. Its performance is benchmarked with that of the Expectation-Maximization algorithm (EM) in minimizing the mean-square-error of the KF prediction. Experimental results show that the EA consistently outperforms the EM and runs significantly faster under the same number of function evaluations.
Keywords :
Evolutionary algorithm , Adaptive mutation , Kalman filter , Genetic Algorithm , Load forecasting
Journal title :
Computer Physics Communications
Serial Year :
2001
Journal title :
Computer Physics Communications
Record number :
1135796
Link To Document :
بازگشت