Author/Authors :
P. J?nsson، نويسنده , , G. Gaigalas، نويسنده , , J. Biero?، نويسنده , , C. Froese Fischer، نويسنده , , I.P. Grant، نويسنده ,
Abstract :
A revised version of Grasp2K [P. Jönsson, X. He, C. Froese Fischer, I.P. Grant, Comput. Phys. Commun. 177 (2007) 597] is presented. It supports earlier non-block and block versions of codes as well as a new block version in which the njgraf library module [A. Bar-Shalom, M. Klapisch, Comput. Phys. Commun. 50 (1988) 375] has been replaced by the librang angular package developed by Gaigalas based on the theory of [G. Gaigalas, Z.B. Rudzikas, C. Froese Fischer, J. Phys. B: At. Mol. Phys. 30 (1997) 3747, G. Gaigalas, S. Fritzsche, I.P. Grant, Comput. Phys. Commun. 139 (2001) 263]. Tests have shown that errors encountered by njgraf do not occur with the new angular package. The three versions are denoted v1, v2, and v3, respectively. In addition, in v3, the coefficients of fractional parentage have been extended to image, making calculations feasible for the lanthanides and actinides. Changes in v2 include minor improvements. For example, the new version of rci2 may be used to compute quantum electrodynamic (QED) corrections only from selected orbitals. In v3, a new program, jj2lsj, reports the percentage composition of the wave function in image and the program rlevels has been modified to report the configuration state function (CSF) with the largest coefficient of an image expansion. The bioscl2 and bioscl3 application programs have been modified to produce a file of transition data with one record for each transition in the same format as in Atsp2K [C. Froese Fischer, G. Tachiev, G. Gaigalas, M.R. Godefroid, Comput. Phys. Commun. 176 (2007) 559], which identifies each atomic state by the total energy and a label for the CSF with the largest expansion coefficient in image intermediate coupling. All versions of the codes have been adapted for 64-bit computer architecture.
Keywords :
Energy levels , Transition probabilities , Zeeman effect , Quantum electrodynamic corrections , Hyperfine structure , Isotope shift , Relativistic atomic structure calculations , Multi-configurational wavefunctions