Title of article :
Three-dimensional simulation studies on electrostatic predictions for carbon nanotube field effect transistors Original Research Article
Author/Authors :
P.-Y. Chen، نويسنده , , Y.-L. Shao، نويسنده , , K.-W. Cheng، نويسنده , , K.-H. Hsu، نويسنده , , J.-S. Wu، نويسنده , , J.-P. Ju، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2007
Pages :
6
From page :
683
To page :
688
Abstract :
Analysis of the electrostatic characteristics and the gate capacitance of typical nanostructured carbon nanotube field effect transistors (CNTFETs) were performed numerically. A previously developed parallelized electrostatic Poissonʹs equation solver (PPES) is employed, coupled with a parallel adaptive mesh refinement (PAMR) to improve the numerical accuracy near the region where variation of potentials are significant. CNTFETs with four typical configurations of the gate electrode, the bottom gate (BG), the double gate (DG), the top gate (TG), and the surrounding gate (SG) were simulated. Effects of the nanotube arrangement and the gate length on the gate capacitance are presented and discussed. The simulation results show that SG-CNTFET possesses the largest gate capacitance among various structures. However, TG-CNTFET is recommended for practical applications by taking into account both the device performance and the difficulty of fabrication. According to the simulated gate capacitance, estimation of the on-state current of CNTFETs is possible.
Keywords :
Parallelized Poissonיs equation solver , Field effect transistors , Carbon nanotubes , Parallel adaptive mesh refinement
Journal title :
Computer Physics Communications
Serial Year :
2007
Journal title :
Computer Physics Communications
Record number :
1137338
Link To Document :
بازگشت