Title of article :
Numerical approximation of the Ginzburg–Landau equation with memory effects in the dynamics of phase transitions Original Research Article
Author/Authors :
N.C. Cassol-Seewald، نويسنده , , M.I.M. Copetti، نويسنده , , G. Krein، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2008
Pages :
13
From page :
297
To page :
309
Abstract :
We consider the out-of-equilibrium time evolution of a nonconserved order parameter using the Ginzburg–Landau equation including memory effects. Memory effects are expected to play important role on the nonequilibrium dynamics for fast phase transitions, in which the time scales of the rapid phase conversion are comparable to the microscopic time scales. We consider two numerical approximation schemes based on Fourier collocation and finite difference methods and perform a numerical analysis with respect to the existence, stability and convergence of the schemes. We present results of direct numerical simulations for one and three spatial dimensions, and examine numerically the stability and convergence of both approximation schemes.
Keywords :
Spinodal decomposition , Nonequilibrium phase transition , Ginzburg–Landau equation , Numerical analysis
Journal title :
Computer Physics Communications
Serial Year :
2008
Journal title :
Computer Physics Communications
Record number :
1137497
Link To Document :
بازگشت