Title of article :
Van der Waals density functional calculations of binding in molecular crystals Original Research Article
Author/Authors :
Kristian Berland، نويسنده , , ?yvind Borck، نويسنده , , Per Hyldgaard، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2011
Pages :
5
From page :
1800
To page :
1804
Abstract :
A recent paper [J. Chem. Phys. 132 (2010) 134705] illustrated the potential of the van der Waals density functional (vdW-DF) method [Phys. Rev. Lett. 92 (2004) 246401] for efficient first-principle accounts of structure and cohesion in molecular crystals. Since then, modifications of the original vdW-DF version (identified as vdW-DF1) have been proposed, and there is also a new version called vdW-DF2 [Phys. Rev. B 82 (2010) 081101(R)], within the vdW-DF framework. Here we investigate the performance and nature of the modifications and the new version for the binding of a set of simple molecular crystals: hexamine, dodecahedrane, C60, and graphite. These extended systems provide benchmarks for computational methods dealing with sparse matter. We show that a previously documented enhancement of non-local correlations of vdW-DF1 over an asymptotic atom-based account close to and a few Å beyond binding separation persists in vdW-DF2. The calculation and analysis of the binding in molecular crystals require appropriate computational tools. In this paper, we also present details on our real-space parallel implementation of the vdW-DF correlation and on the method used to generate asymptotic atom-based pair potentials based on vdW-DF.
Keywords :
Vdw-DF , Molecular crystals , Density functional theory , Cage molecules , C60 , Graphite
Journal title :
Computer Physics Communications
Serial Year :
2011
Journal title :
Computer Physics Communications
Record number :
1138333
Link To Document :
بازگشت