Title of article :
A Chebyshev pseudospectral multidomain method for the soliton solution of coupled nonlinear Schrödinger equations Original Research Article
Author/Authors :
Mehdi Dehghan، نويسنده , , Ameneh Taleei، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2011
Pages :
11
From page :
2519
To page :
2529
Abstract :
The collision of solitary waves is an important problem in both physics and applied mathematics. In this paper, we study the solution of coupled nonlinear Schrödinger equations based on pseudospectral collocation method with domain decomposition algorithm for approximating the spatial variable. The problem is converted to a system of nonlinear ordinary differential equations which will be integrated in time by explicit Runge–Kutta method of order four. The multidomain scheme has much better stability properties than the single domain. Thus this permits using much larger step size for the time integration which fulfills stability restrictions. The proposed scheme reduces the effects of round-of-error for the Chebyshev collocation and also uses less memory without sacrificing the accuracy. The numerical experiments are presented which show the multidomain pseudospectral method has excellent long-time numerical behavior and preserves energy conservation property.
Keywords :
Coupled nonlinear Schr?dinger equations (CNLS) , Pseudospectral method , Explicit Runge–Kutta method of order four , Spectral element method
Journal title :
Computer Physics Communications
Serial Year :
2011
Journal title :
Computer Physics Communications
Record number :
1138439
Link To Document :
بازگشت