Title of article :
A Novel Plant Major Intrinsic Protein in Physcomitrella patens Most Similar to Bacterial Glycerol Channels
Author/Authors :
Chaumont، François نويسنده , , Gustavsson، Sofia نويسنده , , Lebrun، Anne-Sophie نويسنده , , Norden، Kristina نويسنده , , Johanson، Urban نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
-286
From page :
287
To page :
0
Abstract :
A gene encoding a novel fifth type of major intrinsic protein (MIP) in plants has been identified in the moss Physcomitrella patens. Phylogenetic analyses show that this protein, GlpF-like intrinsic protein (GIP1;1), is closely related to a subclass of glycerol transporters in bacteria that in addition to glycerol are highly permeable to water. A likely explanation of the occurrence of this bacterial-like MIP in P. patens is horizontal gene transfer. The expressed P. patens GIP1;1 gene contains five introns and encodes a unique C-loop extension of approximately 110 amino acid residues that has no obvious similarity with any other known protein. Based on alignments and structural comparisons with other MIPs, GIP1;1 is suggested to have retained the permeability for glycerol but not for water. Studies on heterologously expressed GIP1;1 in Xenopus laevis oocytes confirm the predicted substrate specificity. Interestingly, proteins of one of the plant-specific subgroups of MIPs, the NOD26-like intrinsic proteins, are also facilitating the transport of glycerol and have previously been suggested to have evolved from a horizontally transferred bacterial gene. Further studies on localization and searches for GIP1;1 homologs in other plants will clarify the function and significance of this new plant MIP.
Keywords :
Abatement and removal , design , Numerical models , Particle size , mathematical models , Sedimentation
Journal title :
PLANT PHYSIOLOGY
Serial Year :
2005
Journal title :
PLANT PHYSIOLOGY
Record number :
113969
Link To Document :
بازگشت