Title of article :
What Do Microbes Encounter at the Plant Surface? Chemical Composition of Pea Leaf Cuticular Waxes
Author/Authors :
Jetter، Reinhard نويسنده , , Gniwotta، Franka نويسنده , , Vogg، Gerd نويسنده , , Gartmann، Vanessa نويسنده , , Carver، Tim L.W. نويسنده , , Riederer، Markus نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
-518
From page :
519
To page :
0
Abstract :
In the cuticular wax mixtures from leaves of pea (Pisum sativum) cv Avanta, cv Lincoln, and cv Maiperle, more than 70 individual compounds were identified. The adaxial wax was characterized by very high amounts of primary alcohols (71%), while the abaxial wax consisted mainly of alkanes (73%). An aqueous adhesive of gum arabic was employed to selectively sample the epicuticular wax layer on pea leaves and hence to analyze the composition of epicuticular crystals exposed at the outermost surface of leaves. The epicuticular layer was found to contain 74% and 83% of the total wax on adaxial and abaxial surfaces, respectively. The platelet-shaped crystals on the adaxial leaf surface consisted of a mixture dominated by hexacosanol, accompanied by substantial amounts of octacosanol and hentriacontane. In contrast, the ribbon-shaped wax crystals on the abaxial surface consisted mainly of hentriacontane (63%), with approximately 5% each of hexacosanol and octacosanol being present. Based on this detailed chemical analysis of the wax exposed at the leaf surface, their importance for early events in the interaction with host-specific pathogenic fungi can now be evaluated. On adaxial surfaces, approximately 80% of Erysiphe pisi spores germinated and 70% differentiated appressoria. In contrast, significantly lower germination efficiencies (57%) and appressoria formation rates (49%) were found for abaxial surfaces. In conclusion, the influence of the physical structure and the chemical composition of the host surface, and especially of epicuticular leaf waxes, on the prepenetration processes of biotrophic fungi is discussed.
Keywords :
Numerical models , Abatement and removal , design , Sedimentation , Particle size , mathematical models
Journal title :
PLANT PHYSIOLOGY
Serial Year :
2005
Journal title :
PLANT PHYSIOLOGY
Record number :
113977
Link To Document :
بازگشت